Let \(M\) be the point of intersection of the medians of the triangle \(ABC\), and \(O\) an arbitrary point on a plane. Prove that \[OM^2 = 1/3 (OA^2 + OB^2 + OC^2) - 1/9 (AB^2 + BC^2 + AC^2).\]
Three non-coplanar vectors are given. Is it possible to find a fourth vector perpendicular to the three vectors given?
Find the volume of an inclined triangular prism whose base is an equilateral triangle with sides equal to a if the side edge of the prism is equal to the side of the base and is inclined to the plane of the base at an angle of \(60^{\circ}\).