Problems

Age
Difficulty
Found: 20

With a red marker, Margaret marked three points with integer coordinates on a number line. With a blue marker, Angelina marked a midpoint for every pair of red points. Prove that at least 1 of the blue points has an integer coordinate.

Alice took a red marker and marked 5 points with integer coordinates on a coordinate plane. Miriam took a blue marker and marked a midpoint for each pair of red points. Prove that at least 1 of the blue points has integer coordinates.

The centres of all unit squares are marked in a \(10 \times 10\) chequered box (100 points in total). What is the smallest number of lines, that are not parallel to the sides of the square, that are needed to be drawn to erase all of the marked points?

We are given a convex 200-sided polygon in which no three diagonals intersect at the same point. Each of the diagonals is coloured in one of 999 colours. Prove that there is some triangle inside the polygon whose sides lie some of the diagonals, so that all 3 sides are the same colour. The vertices of the triangle do not necessarily have to be the vertices of the polygon.

We are given a table of size \(n \times n\). \(n-1\) of the cells in the table contain the number \(1\). The remainder contain the number \(0\). We are allowed to carry out the following operation on the table:

1. Pick a cell.

2. Subtract 1 from the number in that cell.

3. Add 1 to every other cell in the same row or column as the chosen cell.

Is it possible, using only this operation, to create a table in which all the cells contain the same number?

10 children, including Billy, attended Billy’s birthday party. It turns out that any two children picked from those at the party share a grandfather. Prove that 7 of the children share a grandfather.

A scone contains raisins and sultanas. Prove that inside the scone there will always be two points 1cm apart such that either both lie inside raisins, both inside sultanas, or both lie outside of either raisins or sultanas.