Problems

Age
Difficulty
Found: 6

Prove that for any natural number \(a_1> 1\) there exists an increasing sequence of natural numbers \(a_1, a_2, a_3, \dots\), for which \(a_1^2+ a_2^2 +\dots+ a_k^2\) is divisible by \(a_1+ a_2+\dots+ a_k\) for all \(k \geq 1\).

The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).

Is it true that this sequence is limited?

The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 \geq - a\), \(x_{n + 1} = \sqrt{a + x_n}\). Prove that the sequence \(x_n\) is monotonic and bounded. Find its limit.

We took several positive numbers and constructed the following sequence: \(a_1\) is the sum of the initial numbers, \(a_2\) is the sum of the squares of the original numbers, \(a_3\) is the sum of the cubes of the original numbers, and so on.

a) Could it happen that up to \(a_5\) the sequence decreases (\(a_1> a_2> a_3> a_4> a_5\)), and starting with \(a_5\) – it increases (\(a_5 < a_6 < a_7 <\dots\))?

b) Could it be the other way around: before \(a_5\) the sequence increases, and starting with \(a_5\) – decreases?

At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum?

\(a_1, a_2, a_3, \dots\) is an increasing sequence of natural numbers. It is known that \(a_{a_k} = 3k\) for any \(k\). Find a) \(a_{100}\); b) \(a_{2022}\).