Problems

Age
Difficulty
Found: 14

There are four numbers written in a row. The first number is \(100\). It is known that if we divide the first number by the second number we will get a prime number as a result, if we the second number by the third number we will get a prime number, and if we divide the third number by the fourth number we will also get a prime number. Can all the resulting prime numbers be distinct?

The meeting of the secret agents took place in the green house.
image

Considering the numbers in the windows of the green house, what should be drawn in the empty frame?
image

Pinoccio keeps his Golden Key in the safe that is locked with a numerical password. For secure storage of the Key he replaced some digits in the password by letters (in such a way that different letters substitute different digits). After replacement Pinoccio got the password \(QUANTISED17\). Honest John found out that:
• the number \(QUANTISED\) is divisible by all integers less than 17, and
• the difference \(QUA-NTI\) is divisible by \(7\).
Could he find the password?

Decipher the quote from Philip Pullmans "His Dark Materials":
Erh csy wlepp orsa xli xvyxl, erh xli xvyxl wlepp qeoi csy jvii.
The same letters correspond to the same in the phrase, different letters correspond to different. We know that no original letters stayed in place, meaning that in places of e,r,h there was surely something else.

A five-digit number is called indecomposable if it is not decomposed into the product of two three-digit numbers. What is the largest number of indecomposable five-digit numbers that can come in a row?

Let’s "prove" that the number \(1\) is a multiple of \(3\). We will use the symbol \(\equiv\) to denote "congruent modulo \(3\)". Thus, what we need to prove is that \(1\equiv 0\) modulo \(3\). Let’s see: \(1\equiv 4\) modulo \(3\) means that \(2^1\equiv 2^4\) modulo \(3\), thus \(2\equiv 16\) modulo \(3\), however \(16\) gives the remainder \(1\) after division by \(3\), thus we get \(2\equiv 1\) modulo \(3\), next \(2-1\equiv 1-1\) modulo \(3\), and thus \(1\equiv 0\) modulo \(3\). Which means that \(1\) is divisible by \(3\).

The numbers \(a\) and \(b\) are integers and the number \(p \ge 3\) is prime. Suppose that \(a+b\) and \(a^2 +b^2\) are divisible by \(p\). Show that \(a^2 + b^2\) is divisible by \(p^2\).

Find all possible non-zero digits \(A\) for which the following holds \((AA+AA+1) \times A = AAA\). (Recall \(AA\) means the two-digit number whose first and second digits are \(A\))

Show that for any natural number \(n\geq 1\), the number \[n^4+4n^2+9\] is not a perfect square.

Given a natural number \(n\) you are allowed to perform two operations: "double up", namely get \(2n\) from \(n\), and "increase by \(1\)", i.e. to get \(n+1\) from \(n\). Find the smallest amount of operations one needs to perform to get the number \(n\) from \(1\).