Problems

Age
Difficulty
Found: 5

How can you arrange the numbers \(5/177\), \(51/19\) and \(95/9\) and the arithmetical operators “\(+\)”, “\(-\)”, “\(\times\)” and “\(\div\)” such that the result is equal to 2006? Note: you can use the given numbers and operators more than once.

Decipher the quote from "Alice in Wonderland" from the following matrix:
\[\begin{array}{@{}*{26}{c}@{}} Y&q&o&l&u&e&c&d&a&i&n \\ w&a&r&l&a&w&e&a&t&y&k \\ s&n&t&c&a&e&k&c&e&a&m \\ t&o&d&r&w&e&a&t&a&h&r \\ a&c&n&t&n&e&o&d&t&r&h \\ n&i&d&n&l&g&m&e&x&s&z \end{array}\]

The letters \(A\), \(R\), \(S\) and \(T\) represent different digits from \(1\) to \(9\). The same letters correspond to the same digits, while different letters correspond to different digits.
Find \(ART\), given that \(ARTS+STAR=10,T31\).

image

In the long addition above, each letter corresponds to a different digit. What is the sum \(D + O +G + C +A +T\)?

The letters \(O\), \(P\), \(S\) and \(T\) represent different digits from \(1\) to \(9\). The same letters correspond to the same digits, while different letters correspond to different digits.

Find \(O+P+S+T\), given that \(SPOT+POTS=15,279\).