Problems

Age
Difficulty
Found: 16

There are one hundred natural numbers, they are all different, and sum up to 5050. Can you find those numbers? Are they unique, or is there another bunch of such numbers?

How many integers are there from 0 to 999999, in the decimal notation of which there are no two identical numbers next to each other?

A road of length 1 km is lit with streetlights. Each streetlight illuminates a stretch of road of length 1 m. What is the maximum number of streetlights that there could be along the road, if it is known that when any single streetlight is extinguished the street will no longer be fully illuminated?

In the number \(1234096\dots\) each digit, starting with the 5th digit is equal to the final digit of the sum of the previous 4 digits. Will the digits 8123 ever occur in that order in a row in this number?

In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?

In a row there are 2023 numbers. The first number is 1. It is known that each number, except the first and the last, is equal to the sum of two neighboring ones. Find the last number.

Two players are playing a game. The first player is thinking of a finite sequence of positive integers \(a_1\), \(a_2\), ..., \(a_n\). The second player can try to find the first player’s sequence by naming their own sequence \(b_1\), \(b_2\), ..., \(b_n\). After this, the first player will give the result \(a_1b_1 + a_2b_2 + ...+a_nb_n\). Then the second player can say another sequence \(c_1\), \(c_2\), ..., \(c_n\) to get another answer \(a_1c_1+ a_2c_2 + ... +a_nc_n\) from the first player. Find the smallest number of sequences the second player has to name to find out the sequence \(a_1\), \(a_2\), ..., \(a_n\).

In good conditions, bacteria in a Petri cup spread quite fast, doubling every second. If there was initially one bacterium, then in \(32\) seconds the bacteria will cover the whole surface of the cup.

Now suppose that there are initially \(4\) bacteria. At what time will the bacteria cover the surface of the cup?