Replace the letters with digits in a way that makes the following sum as big as possible: \[SEND +MORE +MONEY.\]
Jane wrote another number on the board. This time it was a two-digit number and again it did not include digit 5. Jane then decided to include it, but the number was written too close to the edge, so she decided to t the 5 in between the two digits. She noticed that the resulting number is 11 times larger than the original. What is the sum of digits of the new number?
a) Find the biggest 6-digit integer number such that each digit, except for the two on the left, is equal to the sum of its two left neighbours.
b) Find the biggest integer number such that each digit, except for the rst two, is equal to the sum of its two left neighbours. (Compared to part (a), we removed the 6-digit number restriction.)
Alice marked several points on a line. Then she put more points – one point between each two adjacent points. Show that the total number of points on the line is always odd.
The product of 22 integers is equal to 1. Show that their sum cannot be zero.
Alex laid out an example of an addition of numbers from cards with numbers on them and then swapped two cards. As you can see, the equality has been violated. Which cards did Alex rearrange?
Arrange brackets and arithmetic signs around these numbers so that the correct equality is obtained: \[\frac{1}{2}\quad \frac{1}{6}\quad \frac{1}{6009} \ = \ 2003.\]
At the end of the term, Billy wrote out his current singing marks in a row and put a multiplication sign between some of them. The product of the resulting numbers turned out to be equal to 2007. What is Billy’s term mark for singing? (The marks that he can get are between 2 and 5, where 5 is the highest mark).
Sarah believes that two watermelons are heavier than three melons, Anna believes that three watermelons are heavier than four melons. It is known that one of the girls is right, and the other is mistaken. Is it true that 12 watermelons are heavier than 18 melons? (It is believed that all watermelons weigh the same and all melons weigh the same.)
Pinocchio correctly solved a problem, but stained his notebook. \[(\bullet \bullet + \bullet \bullet+1)\times \bullet= \bullet \bullet \bullet\]
Under each blot lies the same number, which is not equal to zero. Find this number.