A snail climbs a 10-meter high tree. In day time the snail manages to climb 4 meters, but slips down 3 meters during the night time. How long would it take the snail to reach the top of the tree if it started the journey on a Monday morning?
In Mexico, environmentalists have succeeded in enacting a law whereby every car should not be driven at least one day a week (the owner informs the police about their car registration number and the day of the week when this car will not be driven). In a certain family, all adults want to travel daily (each for their own business!). How many cars (at least) should the family have, if the family has a) 5 adults? b) 8 adults?
Cut the interval \([-1, 1]\) into black and white segments so that the integrals of any a) linear function; b) a square trinomial in white and black segments are equal.
\(x_1\) is the real root of the equation \(x^2 + ax + b = 0\), \(x_2\) is the real root of the equation \(x^2 - ax - b = 0\).
Prove that the equation \(x^2 + 2ax + 2b = 0\) has a real root, enclosed between \(x_1\) and \(x_2\). (\(a\) and \(b\) are real numbers).
With a non-zero number, the following operations are allowed: \(x \rightarrow \frac{1+x}{x}\), \(x \rightarrow \frac{1-x}{x}\). Is it true that from every non-zero rational number one can obtain each rational number with the help of a finite number of such operations?
Given a square trinomial \(f (x) = x^2 + ax + b\). It is known that for any real \(x\) there exists a real number \(y\) such that \(f (y) = f (x) + y\). Find the greatest possible value of \(a\).
We are given a polynomial \(P(x)\) and numbers \(a_1\), \(a_2\), \(a_3\), \(b_1\), \(b_2\), \(b_3\) such that \(a_1a_2a_3 \ne 0\). It turned out that \(P (a_1x + b_1) + P (a_2x + b_2) = P (a_3x + b_3)\) for any real \(x\). Prove that \(P (x)\) has at least one real root.
Some person \(A\) thought of a number from 1 to 15. Some person \(B\) asks some questions to which you can answer ‘yes’ or ‘no’. Can \(B\) guess the number by asking a) 4 questions; b) 3 questions.
It is known that a certain polynomial at rational points takes rational values. Prove that all its coefficients are rational.
Prove that multiplying the polynomial \((x + 1)^{n-1}\) by any polynomial different from zero, we obtain a polynomial having at least \(n\) nonzero coefficients.