Problems

Age
Difficulty
Found: 365

A resident of one foreign intelligence agency informed the centre about the forthcoming signing of a number of bilateral agreements between the fifteen former republics of the USSR. According to his report, each of them will conclude an agreement exactly with three others. Should this resident be trusted?

A rectangle is cut into several smaller rectangles, the perimeter of each of which is an integer number of meters. Is it true that the perimeter of the original rectangle is also an integer number of meters?

Arrange brackets and arithmetic signs around these numbers so that the correct equality is obtained: \[\frac{1}{2}\quad \frac{1}{6}\quad \frac{1}{6009} \ = \ 2003.\]

In Mongolia there are in circulation coins of 3 and 5 tugriks. An entrance ticket to the central park costs 4 tugriks. One day before the opening of the park, a line of 200 visitors queued up in front of the ticket booth. Each of them, as well as the cashier, has exactly 22 tugriks. Prove that all of the visitors will be able to buy a ticket in the order of the queue.

There are two numbers \(x\) and \(y\) being added together. The number \(x\) is less than the sum \(x+y\) by 2000. The sum \(x+y\) is bigger than \(y\) by 6. What are the values of \(x\) and \(y\)?

Two different numbers \(x\) and \(y\) (not necessarily integers) are such that \(x^2-2000x=y^2-2000y\). Find the sum of \(x\) and \(y\).