Let \(a,b,c>0\) be the length of sides of a triangle. Show that the triangle is right-angled if and only if \((a^4+b^4+c^4)^2 = 2(a^8+b^8+c^8)\). Note that this is a symmetric characterization of right-angled triangles by its side lengths.
Show that the sum of any \(100\) consecutive numbers is a multiple of \(50\) but not a multiple of \(100\).
Alice sums \(n\) consecutive numbers, not necessarily starting from \(1\), where \(n\) is a multiple of four. An example of such a sum is \(5+6+7+8\). Can this sum ever be odd?
Show that the difference between two consecutive square numbers is always odd.
Let \(n\) be a natural number and \(x=2n^2+n\). Prove that the sum of the square of the \(n+1\) consecutive integers starting at \(x\) is the sum of the square of the \(n\) consecutive integers starting at \(x+n+1\).
For example, when \(n=2\), we have \(10^2+11^2+12^2=13^2+14^2\)!
Show that if \(a\) and \(b\) are numbers, then \(a^2-b^2=(a-b)\times (a+b)\).
Show that if \(x,y,z\) are distinct nonzero numbers such that \(x+y+z = 0\), then we have \[\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right) = 9.\]