Problems

Age
Difficulty
Found: 759

A polynomial of degree \(n > 1\) has \(n\) distinct roots \(x_1, x_2, \dots , x_n\). Its derivative has the roots \(y_1, y_2, \dots , y_{n-1}\). Prove the inequality \[\frac{x_1^2 + \dots + x_n^2}{n}> \frac{y_1^2 + \dots + y_n^2}{n}.\]

We are given 111 different natural numbers that do not exceed 500. Could it be that for each of these numbers, its last digit coincides with the last digit of the sum of all of the remaining numbers?

The number \(x\) is such a number that exactly one of the four numbers \(a = x - \sqrt{2}\), \(b = x-1/x\), \(c = x + 1/x\), \(d = x^2 + 2\sqrt{2}\) is not an integer. Find all such \(x\).

The numbers \(x\), \(y\) and \(z\) are such that all three numbers \(x + yz\), \(y + zx\) and \(z + xy\) are rational, and \(x^2 + y^2 = 1\). Prove that the number \(xyz^2\) is also rational.

16 teams took part in a handball tournament where a victory was worth 2 points, a draw – 1 point and a defeat – 0 points. All teams scored a different number of points, and the team that ranked seventh, scored 21 points. Prove that the winning team drew at least once.

The numerical function \(f\) is such that for any \(x\) and \(y\) the equality \(f (x + y) = f (x) + f (y) + 80xy\) holds. Find \(f(1)\) if \(f(0.25) = 2\).

Solve the system of equations: \[\begin{aligned} \sin y - \sin x &= x-y; &&\text{and}\\ \sin y - \sin z &= z-y; && \text{and}\\ x-y+z &= \pi. \end{aligned}\]

To a certain number, we add the sum of its digits and the answer we get is 2014. Give an example of such a number.

Valentina added a number (not equal to 0) taken to the power of four and the same number to the power two and reported the result to Peter. Can Peter determine the unique number that Valentina chose?

In a row there are 20 different natural numbers. The product of every two of them standing next to one another is the square of a natural number. The first number is 42. Prove that at least one of the numbers is greater than 16,000.