Problems

Age
Difficulty
Found: 759

How can you arrange the numbers \(5/177\), \(51/19\) and \(95/9\) and the arithmetical operators “\(+\)”, “\(-\)”, “\(\times\)” and “\(\div\)” such that the result is equal to 2006? Note: you can use the given numbers and operators more than once.

There are 13 weights, each weighing an integer number of grams. It is known that any 12 of them can be divided into two cups of weights, six weights on each one, which will come to equilibrium. Prove that all the weights have the same weight.

If we are given any 100 whole numbers then amongst them it is always possible to choose one, or several of them, so that their sum gives a number divisible by 100. Prove that this is the case.

The equations \[ax^2 + bx + c = 0 \tag{1}\] and \[- ax^2 + bx + c \tag{2}\] are given. Prove that if \(x_1\) and \(x_2\) are, respectively, any roots of the equations (1) and (2), then there is a root \(x_3\) of the equation \(\frac 12 ax^2 + bx + c\) such that either \(x_1 \leq x_3 \leq x_2\) or \(x_1 \geq x_3 \geq x_2\).

Prove that if \(x_0^4 + a_1x_0^3 + a_2x_0^2 + a_3x_0 + a_4\) and \(4x_0^3 + 3a_1x_0^2 + 2a_2x_0 + a_3 = 0\) then \(x^4 + a_1x^3 + a_2x^2 + a_3x + a_4\) is divisible by \((x - x_0)^2\).

The segment \(OA\) is given. From the end of the segment \(A\) there are 5 segments \(AB_1, AB_2, AB_3, AB_4, AB_5\). From each point \(B_i\) there can be five more new segments or not a single new segment, etc. Can the number of free ends of the constructed segments be 1001? By the free end of a segment we mean a point belonging to only one segment (except point \(O\)).

There is a system of equations \[\begin{aligned} * x + * y + * z &= 0,\\ * x + * y + * z &= 0,\\ * x + * y + * z &= 0. \end{aligned}\] Two people alternately enter a number instead of a star. Prove that the player that goes first can always ensure that the system has a non-zero solution.

Note that if you turn over a sheet on which numbers are written, then the digits 0, 1, 8 will not change and the digits 6 and 9 will switch places, whilst the others will lose their meaning. How many nine-digit numbers exist that do not change when a sheet is turned over?