The edges of a cube are assigned with integer values. For each vertex we look at the numbers corresponding to the three edges coming from this vertex and add them up. In case we get 8 equal results we call such cube “cute”. Are there any “cute” cubes with the following numbers corresponding to the edges:
(a) \(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\);
(b) \(-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6\)?
a) A 1 or a 0 is placed on each vertex of a cube. The sum of the 4 adjacent vertices is written on each face of the cube. Is it possible for each of the numbers written on the faces to be different?
b) The same question, but if 1 and \(-1\) are used instead.
a) A piece of wire that is 120 cm long is given. Is it possible, without breaking the wire, to make a cube frame with sides of 10 cm?
b) What is the smallest number of times it will be necessary to break the wire in order to still produce the required frame?
a) What is the minimum number of pieces of wire needed in order to weld a cube’s frame?
b) What is the maximum length of a piece of wire that can be cut from this frame? (The length of the edge of the cube is 1 cm).