The edges of a cube are assigned with integer values. For each vertex we look at the numbers corresponding to the three edges coming from this vertex and add them up. In case we get 8 equal results we call such cube “cute”. Are there any “cute” cubes with the following numbers corresponding to the edges:
(a) \(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\);
(b) \(-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6\)?
The surface of a \(3\times 3\times 3\) Rubik’s Cube contains 54 squares. What is the maximum number of squares we can mark, so that no marked squares share a vertex or are directly adjacent to another marked square?