Prove the equalities:
a) \(z + \overline {z} = 2 \operatorname{Re} z\);
b) \(z - \overline {z} = 2i \operatorname{Im} z\);
c) \(\overline {z} z = |z|^2\).
Find the largest and smallest values of the functions
a) \(f_1 (x) = a \cos x + b \sin x\); b) \(f_2 (x) = a \cos^2x + b \cos x \sin x + c \sin^2x\).
Prove that the function \(\cos \sqrt {x}\) is not periodic.
Prove the formulae: \(\arcsin (- x) = - \arcsin x\), \(\arccos (- x) = \pi - \arccos x\).
The Babylonian algorithm for deducing \(\sqrt{2}\). The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + 2/x_n)\) (\(n \geq 1\)).
Prove that \(\lim\limits_{n\to\infty} x_n = \sqrt{2}\).
What will the sequence from the previous problem 61297 be converging towards if we choose \(x_1\) as equal to \(-1\) as the initial condition?
The iterative formula of Heron. Prove that the sequence of numbers \(\{x_n\}\) given by the conditions \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + k/x_n)\), converges. Find the limit of this sequence.
The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).
Is it true that this sequence is limited?
The algorithm of the approximate calculation of \(\sqrt[3]{a}\). The sequence \(\{a_n\}\) is defined by the following conditions: \(a_0 = a > 0\), \(a_{n + 1} = 1/3 (2a_n + a/a^2_n)\) (\(n \geq 0\)).
Prove that \(\lim\limits_{n\to\infty} a_n = \sqrt[3]{a}\).
The sequence of numbers \(\{a_n\}\) is given by \(a_1 = 1\), \(a_{n + 1} = 3a_n/4 + 1/a_n\) (\(n \geq 1\)). Prove that:
a) the sequence \(\{a_n\}\) converges;
b) \(|a_{1000} - 2| < (3/4)^{1000}\).