Let \(n\) numbers are given together with their product \(p\). The difference between \(p\) and each of these numbers is an odd number.
Prove that all \(n\) numbers are irrational.
a) Could an additional \(6\) digits be added to any \(6\)-digit number starting with a \(5\), so that the \(12\)-digit number obtained is a complete square?
b) The same question but for a number starting with a \(1\).
c) Find for each \(n\) the smallest \(k = k (n)\) such that to each \(n\)-digit number you can assign \(k\) more digits so that the resulting \((n + k)\)-digit number is a complete square.
Initially, on each cell of a \(1 \times n\) board a checker is placed. The first move allows you to move any checker onto an adjacent cell (one of the two, if the checker is not on the edge), so that a column of two pieces is formed. Then one can move each column in any direction by as many cells as there are checkers in it (within the board); if the column is on a non-empty cell, it is placed on a column standing there and unites with it. Prove that in \(n - 1\) moves you can collect all of the checkers on one square.
A group of psychologists developed a test, after which each person gets a mark, the number \(Q\), which is the index of his or her mental abilities (the greater \(Q\), the greater the ability). For the country’s rating, the arithmetic mean of the \(Q\) values of all of the inhabitants of this country is taken.
a) A group of citizens of country \(A\) emigrated to country \(B\). Show that both countries could grow in rating.
b) After that, a group of citizens from country \(B\) (including former ex-migrants from \(A\)) emigrated to country \(A\). Is it possible that the ratings of both countries have grown again?
c) A group of citizens from country \(A\) emigrated to country \(B\), and group of citizens from country \(B\) emigrated to country \(C\). As a result, each country’s ratings was higher than the original ones. After that, the direction of migration flows changed to the opposite direction – part of the residents of \(C\) moved to \(B\), and part of the residents of \(B\) migrated to \(A\). It turned out that as a result, the ratings of all three countries increased again (compared to those that were after the first move, but before the second). (This is, in any case, what the news agencies of these countries say). Can this be so (if so, how, if not, why)?
(It is assumed that during the considered time, the number of citizens \(Q\) did not change, no one died and no one was born).
In a row there are 2023 numbers. The first number is 1. It is known that each number, except the first and the last, is equal to the sum of two neighboring ones. Find the last number.
Janine and Zahara each thought of a natural number and said them to Alex. Alex wrote the sum of the thought of numbers onto one sheet of paper, and on the other – their product, after which one of the sheets was hidden, and the other (on it was written the number of 2002) was shown to Janine and Zahara. Seeing this number, Janine said that she did not know what number Zahara had thought of. Hearing this, Zahara said that she did not know what number Janine had thought of. What was the number which Zahara had thought of?
On a table there are 2022 cards with the numbers 1, 2, 3, ..., 2022. Two players take one card in turn. After all the cards are taken, the winner is the one who has a greater last digit of the sum of the numbers on the cards taken. Find out which of the players can always win regardless of the opponent’s strategy, and also explain how he should go about playing.
Carpenters were sawing some logs. They made 10 cuts and this produced 16 pieces of wood. How many logs did they saw?
Snow White cut out a big square of cotton fabric and placed it in a chest. The first gnome came, took out the square of fabric from the chest, cut it into four squares, put these back in the chest and left. Later the second gnome came and took out one of the squares and then cut it into four pieces and placed all of these in the chest. Then came the third gnome. He also took out one of the squares and cut it into four squares and put them all back in the chest. The rest of the gnomes also did the same thing. How many squares of fabric were in the chest after the seventh gnome left?
Prove the divisibility rule for \(25\): a number is divisible by \(25\) if and only if the number made by the last two digits of the original number is divisible by \(25\);
Can you come up with a divisibility rule for \(125\)?