The student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number, which turned out to be seven times bigger than their product. Determine these numbers.
The student did not notice the multiplication sign between two seven-digit numbers and wrote one fourteen-digit number, which turned out to be three times bigger than their product. Determine these numbers.
Prove that amongst numbers written only using the number 1, i.e.: 1, 11, 111, etc, there is a number than is divisible by 1987.
Prove that there is a power of 3 that ends in 001.
Reception pupil Peter knows only the number 1. Prove that he can write a number divisible by 1989.
Prove that for any number \(d\), which is not divisible by \(2\) or by \(5\), there is a number whose decimal notation contains only ones and which is divisible by \(d\).
Reception pupil Peter knows only the number 1. Prove that he can write a number divisible by 2001.
We are given 51 two-digit numbers – we will count one-digit numbers as two-digit numbers with a leading 0. Prove that it is possible to choose 6 of these so that no two of them have the same digit in the same column.
Prove that amongst any 11 different decimal fractions of infinite length, there will be two whose digits in the same column – 10ths, 100s, 1000s, etc – coincide (are the same) an infinite number of times.
How many six-digit numbers exist, for which each succeeding number is smaller than the previous one?