There are one hundred natural numbers, they are all different, and sum up to 5050. Can you find those numbers? Are they unique, or is there another bunch of such numbers?
The function \(f (x)\) is defined on the positive real \(x\) and takes only positive values. It is known that \(f (1) + f (2) = 10\) and \(f(a+b) = f(a) + f(b) + 2\sqrt{f(a)f(b)}\) for any \(a\) and \(b\). Find \(f (2^{2011})\).
\(A\) and \(B\) shoot in a shooting gallery, but they only have one six-shot revolver with one cartridge. Therefore, they agreed in turn to randomly rotate the drum and shoot. \(A\) goes first. Find the probability that the shot will occur when \(A\) has the revolver.