Let us introduce the notation – we denote the product of all natural numbers from 1 to \(n\) by \(n!\). For example, \(5!=1\times2\times3\times4\times5=120\).
a) Prove that the product of any three consecutive natural numbers is divisible by \(3!=6\).
b) What about the product of any four consecutive natural numbers? Is it always divisible by 4!=24?
For what natural numbers \(a\) and \(b\) is the number \(\log_{a} b\) rational?
The product of 1986 natural numbers has exactly 1985 different prime factors. Prove that either one of these natural numbers, or the product of several of them, is the square of a natural number.
The product of a group of 48 natural numbers has exactly 10 prime factors. Prove that the product of some four of the numbers in the group will always give a square number.