In a group of friends, each two people have exactly five common acquaintances. Prove that the number of pairs of friends is divisible by 3.
Solve the equations in integers:
a) \(3x^2 + 5y^2 = 345\);
b) \(1 + x + x^2 + x^3 = 2^y\).
Is it possible to:
a) load two coins so that the probability of “heads” and “tails” were different, and the probability of getting any of the combinations “tails, tails,” “heads, tails”, “heads, heads” be the same?
b) load two dice so that the probability of getting any amount from 2 to 12 would be the same?