Solve the equation \(\lfloor x^3\rfloor + \lfloor x^2\rfloor + \lfloor x\rfloor = \{x\} - 1\).
A resident of one foreign intelligence agency informed the centre about the forthcoming signing of a number of bilateral agreements between the fifteen former republics of the USSR. According to his report, each of them will conclude an agreement exactly with three others. Should this resident be trusted?
In Mongolia there are in circulation coins of 3 and 5 tugriks. An entrance ticket to the central park costs 4 tugriks. One day before the opening of the park, a line of 200 visitors queued up in front of the ticket booth. Each of them, as well as the cashier, has exactly 22 tugriks. Prove that all of the visitors will be able to buy a ticket in the order of the queue.
There are two numbers \(x\) and \(y\) being added together. The number \(x\) is less than the sum \(x+y\) by 2000. The sum \(x+y\) is bigger than \(y\) by 6. What are the values of \(x\) and \(y\)?
Replace \(a, b\) and \(c\) with integers not equal to \(1\) in the equality \((ay^b)^c = - 64y^6\), so it would become an identity.
Prove that a graph with \(n\) vertices, the degree of each of which is at least \(\frac{n-1}{2}\), is connected.
In the Far East, the only type of transport is a carpet-plane. From the capital there are 21 carpet-planes, from the city of Dalny there is one carpet-plane, and from all of the other cities there are 20. Prove that you can fly from the capital to Dalny (possibly with interchanges).
Solve the equations \(x^2 = 14 + y^2\) in integers.
Solve the equation with integers \(x^2 + y^2 = 4z - 1\).
a) they have 10 vertices, the degree of each of which is equal to 9?
b) they have 8 vertices, the degree of each of which is equal to 3?
c) are they connected, without cycles and contain 6 edges?