To each pair of numbers \(x\) and \(y\) some number \(x * y\) is placed in correspondence. Find \(1993 * 1935\) if it is known that for any three numbers \(x, y, z\), the following identities hold: \(x * x = 0\) and \(x * (y * z) = (x * y) + z\).
A numeric set \(M\) containing 2003 distinct numbers is such that for every two distinct elements \(a, b\) in \(M\), the number \(a^2+ b\sqrt 2\) is rational. Prove that for any \(a\) in \(M\) the number \(q\sqrt 2\) is rational.
Solve the equation \((x + 1)^3 = x^3\).
The numbers \(p\) and \(q\) are such that the parabolas \(y = - 2x^2\) and \(y = x^2 + px + q\) intersect at two points, bounding a certain figure.
Find the equation of the vertical line dividing the area of this figure in half.
Is it true that, if \(b>a+c>0\), then the quadratic equation \(ax^2 +bx+c=0\) has two roots?
Solve the inequality: \(\lfloor x\rfloor \times \{x\} < x - 1\).
One of the roots of the equation \(x^2 + ax + b = 0\) is \(1 + \sqrt 3\). Find \(a\) and \(b\) if you know that they are rational.
Prove that if \((p, q) = 1\) and \(p/q\) is a rational root of the polynomial \(P (x) = a_nx^n + \dots + a_1x + a_0\) with integer coefficients, then
a) \(a_0\) is divisible by \(p\);
b) \(a_n\) is divisible by \(q\).
Derive from the theorem in question 61013 that \(\sqrt{17}\) is an irrational number.
Prove that the root a of the polynomial \(P (x)\) has multiplicity greater than 1 if and only if \(P (a) = 0\) and \(P '(a) = 0\).