Problems

Age
Difficulty
Found: 9

Let us introduce the notation – we denote the product of all natural numbers from 1 to \(n\) by \(n!\). For example, \(5!=1\times2\times3\times4\times5=120\).

a) Prove that the product of any three consecutive natural numbers is divisible by \(3!=6\).

b) What about the product of any four consecutive natural numbers? Is it always divisible by 4!=24?

At the end of the term, Billy wrote out his current singing marks in a row and put a multiplication sign between some of them. The product of the resulting numbers turned out to be equal to 2007. What is Billy’s term mark for singing? (The marks that he can get are between 2 and 5, where 5 is the highest mark).

The product of two natural numbers, each of which is not divisible by 10, is equal to 1000. Find the sum of these two numbers.

In a row there are 20 different natural numbers. The product of every two of them standing next to one another is the square of a natural number. The first number is 42. Prove that at least one of the numbers is greater than 16,000.

The product of 1986 natural numbers has exactly 1985 different prime factors. Prove that either one of these natural numbers, or the product of several of them, is the square of a natural number.

The product of a group of 48 natural numbers has exactly 10 prime factors. Prove that the product of some four of the numbers in the group will always give a square number.