It is easy to construct one equilateral triangle from three identical matches. Can we make four equilateral triangles by adding just three more matches identical to the original ones?
Construct the triangle \(ABC\) along the side \(a\), the height \(h_a\) and the angle \(A\).
Construct a right-angled triangle along the leg and the hypotenuse.
Construct a circle with a given centre, tangent to a given circle.
Construct a straight line passing through a given point and tangent to a given circle.
Three segments whose lengths are equal to \(a, b\) and \(c\) are given. Construct a segment of length: a) \(ab/c\); b) \(\sqrt {ab}\).
Construct the triangle ABC by the medians \(m_a, m_b\) and \(m_c\).
Construct a triangle with the side \(c\), median to side \(a\), \(m_a\), and median to side \(b\), \(m_b\).
Construct a triangle with the side \(a\), the side \(b\) and height to side \(a\), \(h_a\).
Inside an angle two points, \(A\) and \(B\), are given. Construct a circle which passes through these points and cuts the sides of the angle into equal segments.