A maths teacher draws a number of circles on a piece of paper. When she shows this piece of paper to the young mathematician, he claims he can see only five circles. The maths teacher agrees. But when she shows the same piece of paper to another young mathematician, he says that there are exactly eight circles. The teacher confirms that this answer is also correct. How is that possible and how many circles did she originally draw on that piece of paper?
What is the ratio between the red and blue area? All shapes are semicircles.
Find the area of the green annulus, if the marked pink segment has length \(1\).
What is the maximum number of pairwise non-parallel segments with endpoints at the vertices of a regular \(n\)-gon?
The bisector of the outer corner at the vertex \(C\) of the triangle \(ABC\) intersects the circumscribed circle at the point \(D\). Prove that \(AD = BD\).
Let \(a\) and \(b\) be the lengths of the sides of a right-angled triangle and \(c\) the length of its hypotenuse. Prove that:
a) The radius of the inscribed circle of the triangle is \((a + b - c)/2\);
b) The radius of the circle that is tangent to the hypotenuse and the extensions of the sides of the triangle, is equal to \((a + b + c)/2\).
Several circles, whose total length of circumferences is 10, are placed inside a square of side 1. Prove that there will always be some straight line that crosses at least four of the circles.
On a circle of radius 1, the point \(O\) is marked and from this point, to the right, a notch is marked using a compass of radius \(l\). From the obtained notch \(O_1\), a new notch is marked, in the same direction with the same radius and this is process is repeated 1968 times. After this, the circle is cut at all 1968 notches, and we get 1968 arcs. How many different lengths of arcs can this result in?