Problems

Age
Difficulty
Found: 56

WizardLand Middle School offers a new elective this year: an astrology class. Fifteen students have registered for this course. Prove that at least 2 of these students were born under the same zodiac sign (there are 12 zodiac signs in total, one for each month).

Prove that out of any 11 natural numbers, 2 can be found such that their difference is a multiple of 10.

Eight knights took part in a 3-contest tournament. They competed in archery, sword fighting, and lance throwing. For each contest, a knight was awarded 0, 1 or 2 points. Prove that at least two of these knights earned the same total number of points.

London has more than eight million inhabitants. Show that nine of these people must have the same number of hairs on their heads if it is known that no person has more than one million hairs on his or her head.

Will and Neal are writing numbers on the blackboard. Each number is only composed of digits \(0\) and \(1\) in its decimal representation (as in, normal base 10 numbers). Will then says “I wonder if there is such a number we could write that can be divided by \(2018\)". Is there?

A math circle student Emilio wrote a computer program for his house robot, Basil. Starting from 1, Basil should keep writing bigger and bigger numbers formed by 1s: 1, 11, 111, etc. The program terminates when Basil writes a number that is a multiple of 19. Prove that the program will terminate in fewer than 20 steps.

Know-it-all came to visit the twin brothers Screw and Nut, knowing that one of them never speaks the truth, and asked one of them: “Are you Screw?”. “Yes,” he replied. When Know-it-all asked the second brother the same question, he received an equally clear answer and immediately determined who was who.

Who was called Screw?

In any group of 10 children, out of a total of 60 pupils, there will be three who are in the same class. Will it always be the case that amongst the 60 pupils there will be: 1) 15 classmates? 2) 16 classmates?

Prove that if 21 people collected 200 nuts between them, there are two people in the group who collected the same number of nuts.