After login you will be able to create your own lists of problems.

Found: 7

Leo’s grandma placed five empty plates on a square 1 metre\({}\times{}\)1 metre table for dinner. Show that some two of these plates were less than 75 cm apart.

Prove that, in a circle of radius 10, you cannot place 400 points so that the distance between each two points is greater than 1.

A square area of size \(100\times 100\) is covered in tiles of size \(1\times 1\) in 4 different colours – white, red, black, and grey. No two tiles of the same colour touch one another, that is share a side or a corner. How many red tiles can there be?

10 magazines lie on a coffee table, completely covering it. Prove that you can remove five of them so that the remaining magazines will cover at least half of the table.

In a square which has sides of length 1 there are 100 figures, the total area of which sums to more than 99. Prove that in the square there is a point which belongs to all of these figures.

a) A square of area 6 contains three polygons, each of area 3. Prove that among them there are two polygons that have an overlap of area no less than 1.

b) A square of area 5 contains nine polygons of area 1. Prove that among them there are two polygons that have an overlap of area no less than \(\frac{1}{9}\).

A carpet has a square shape with side 275 cm. A moth has eaten 4 holes through it. Will it always be possible to cut a square section of side 1 m out of the carpet, so that the section does not contain any holes? Treat the holes as points.