Problems

Age
Difficulty
Found: 2591

27 coins are given, of which one is a fake, and it is known that a counterfeit coin is lighter than a real one. How can the counterfeit coin be found from 3 weighings on the scales without weights?

Prove that for any number \(d\), which is not divisible by \(2\) or by \(5\), there is a number whose decimal notation contains only ones and which is divisible by \(d\).

Some open sectors – that is sectors of circles with infinite radii – completely cover a plane. Prove that the sum of the angles of these sectors is no less than \(360^\circ\).

For which \(n > 3\), can a set of weights with masses of \(1, 2, 3, ..., n\) grams be divided into three groups of equal mass?

Two people toss a coin: one tosses it 10 times, the other – 11 times. What is the probability that the second person’s coin showed heads more times than the first?

A spherical planet is surrounded by 25 point asteroids. Prove, that at any given moment there will be a point on the surface of the planet from which an astronomer will not be able to see more than 11 asteroids.

It is known that in a convex \(n\)-gon (\(n > 3\)) no three diagonals pass through one point. Find the number of points (other than the vertex) where pairs of diagonals intersect.

It is known that \[35! = 10333147966386144929 * 66651337523200000000.\] Find the number replaced by an asterisk.