Problems

Age
Difficulty
Found: 1445

Two players in turn increase a natural number in such a way that at each increase the difference between the new and old values of the number is greater than zero, but less than the old value. The initial value of the number is 2. The winner is the one who can create the number 1987. Who wins with the correct strategy: the first player or his partner?

What is the minimum number of squares that need to be marked on a chessboard, so that:

1) There are no horizontally, vertically, or diagonally adjacent marked squares.

2) Adding any single new marked square breaks rule 1.

What figure should I put in place of the “?” in the number \(888 \dots 88\,?\,99 \dots 999\) (eights and nines are written 50 times each) so that it is divisible by 7?

We are given 101 rectangles with integer-length sides that do not exceed 100.

Prove that amongst them there will be three rectangles \(A, B, C\), which will fit completely inside one another so that \(A \subset B \subset C\).

In a certain kingdom there were 32 knights. Some of them were vassals of others (a vassal can have only one suzerain, and the suzerain is always richer than his vassal). A knight with at least four vassals is given the title of Baron. What is the largest number of barons that can exist under these conditions?

(In the kingdom the following law is enacted: “the vassal of my vassal is not my vassal”).

Sage thought of the sum of some three natural numbers, and the Patricia thought about their product.

“If I knew,” said Sage, “that your number is greater than mine, then I would immediately name the three numbers that are needed.”

“My number is smaller than yours,” Patricia answered, “and the numbers you want are ..., ... and ....”

What numbers did Patricia name?

Initially, a natural number \(A\) is written on a board. You are allowed to add to it one of its divisors, distinct from itself and one. With the resulting number you are permitted to perform a similar operation, and so on.

Prove that from the number \(A = 4\) one can, with the help of such operations, come to any given in advance composite number.

A student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number. The result was three times greater.

Find these numbers.

There is a chocolate bar with five longitudinal and eight transverse grooves, along which it can be broken (in total into \(9 * 6 = 54\) squares). Two players take part, in turns. A player in his turn breaks off the chocolate bar a strip of width 1 and eats it. Another player who plays in his turn does the same with the part that is left, etc. The one who breaks a strip of width 2 into two strips of width 1 eats one of them, and the other is eaten by his partner. Prove that the first player can act in such a way that he will get at least 6 more chocolate squares than the second player.