Problems

Age
Difficulty
Found: 1445

Does there exist a quadrilateral which can be cut into six parts with two straight lines?

Is it possible to cut such a hole in \(10\times 10 \,\,cm^2\) piece of paper, though which you can step?

A square \(4 \times 4\) is called magic if all the numbers from 1 to 16 can be written into its cells in such a way that the sums of numbers in columns, rows and two diagonals are equal to each other. Sixth-grader Edwin began to make a magic square and written the number 1 in certain cell. His younger brother Theo decided to help him and put the numbers \(2\) and \(3\) in the cells adjacent to the number \(1\). Is it possible for Edwin to finish the magic square after such help?

Cut a square into \(3\) parts which you can use to construct a triangle with angles less than \(90^{\circ}\) and three different sides.

Find all rectangles that can be cut into \(13\) equal squares.

Cut a square into two equal:
1. Triangles.
2. Pentagons
3. Hexagons.

Today we will practice to encrypt and decipher information using some of the most common codes. Majority of the codes in use can be alphabetic and numeric, namely one may want to encode a word, a phrase, or a number, or just any string of symbols using either letters, or numbers, or both. Some of the codes, however may use various other symbols to encrypt the information. To solve some of the problems you will need the correspondence between alphabet letters and numbers

Using the representation of Latin alphabet as sequences of \(0\)s and \(1\)s five symbols long, encrypt your first and last name.

Decipher the quote from Philip Pullmans "His Dark Materials":
Erh csy wlepp orsa xli xvyxl, erh xli xvyxl wlepp qeoi csy jvii.
The same letters correspond to the same in the phrase, different letters correspond to different. We know that no original letters stayed in place, meaning that in places of e,r,h there was surely something else.

Decipher the quote from "Alice in Wonderland" from the following matrix:
\[\begin{array}{@{}*{26}{c}@{}} Y&q&o&l&u&e&c&d&a&i&n \\ w&a&r&l&a&w&e&a&t&y&k \\ s&n&t&c&a&e&k&c&e&a&m \\ t&o&d&r&w&e&a&t&a&h&r \\ a&c&n&t&n&e&o&d&t&r&h \\ n&i&d&n&l&g&m&e&x&s&z \end{array}\]