Problems

Age
Difficulty
Found: 1442

In the quadrilateral \(ABCD\) the diagonals \(AC\) and \(BD\) intersect at the point \(E\). It is known that the perimeter of the triangle \(ABC\) is equal to the perimeter of the triangle \(ABD\), and the perimeter of the triangle \(ACD\) equals the perimeter of the triangle \(BCD\).
image
Prove that \(AE=BE\).

In the triangle \(ABC\) the segment \(AB=5\) and the segment \(BD\) is the median. The segment \(AE\) is perpendicular to \(BD\) and divides \(BD\) in half. Find the length of \(AC\).
image

A magic square is a square filled with numbers, one in each cell, in such a way that the sums of the numbers in each row, each column and along each of the two main diagonals are the same. The value of this sum is known as the magic constant of the square. Show that in any \(4 \times 4\) magic square (which contains \(16\) numbers) the sum of all the numbers in the \(4\) central squares is also equal to the magic constant of the square.

Show that for any natural number \(n\geq 1\), the number \[n^4+4n^2+9\] is not a perfect square.

There are \(12\) light bulbs placed on top of the numbers on a clock face. Initially, only the bulb at \(12\) is on. We can choose any \(6\) consecutive bulbs and change their state simultaneously, that is, if any were on, we turn them off, if any were off, we turn them on. Can we perform this operation multiple times so that in the end only the bulb at \(11\) is on?

A group of schoolboys are going to walk down a narrow path in a straight line, one behind the other. There are \(11\) boys, and among them are Will, Tom, and Alex. If exactly two of them walk directly next to each other, they will start arguing. But if the three of them are all next to each other, in any order, the third one will always break the argument of the other two. We don’t want any arguments to persist. How many ways are there to order all \(11\) boys?

For a natural number \(n\) consider a regular \(2n\)-gon, with every vertex coloured either blue or green. It is known that the number of blue vertices equals the number of green vertices. Show that the number of main diagonals (passing through the centre of the \(2n\)-gon) with both ends blue is the same as the number of main diagonals with both ends green.

Coloring is a very neat technique in problems involving boards since it allows us to simplify the problem a great deal. The important part is focusing on an adequate subset of the squares, however doing it with colors is a lot easier.
The kinds of colorings can be very different and there is no general rule for determining which one is going to solve the problem. There are some colorings (such as a chessboard coloring) that are frequently used, but the only way to learn how to use this technique is by solving several problems of this style.
When the problem is related to pieces covering a certain figure, the “good colorings” are those that yield an invariant associated with the pieces. This can be the number of squares of one color they cover, the number of colors they may use, some parity argument, etc. Coloring is basically an illustrative way to describe invariants.

One can hardly imagine modern life without numbers, but have you wondered when and how the numbers were invented? It turns out people started using numbers about \(42000\) years BCE supposedly to mark the dates in calendar. But how do we represent the numbers in writing? Well, there are two ways: examples of the first abstract numeral systems are generally tallying systems, the ones where the value or contribution of a digit does not depend on its position, a good example is the famous Roman numeral system: \(I\, V\, X\, L\, C\, D\, M\), here a digit has only one value: \(I\) means one, \(X\) means ten and \(C\) a hundred. However, one might struggle to express large numbers in Roman system.
Majority of ancient civilisations, Sumerian, Egyptian, Babylonian, Chinese, Japanese, Indian used what is called positional numeral systems, where the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. All these systems, even when invented independently, have something in common, they are what is called "base-\(10\)".
Try to guess why do we use the decimal numeral system, which has exactly \(10\) digits in our everyday use. Because it does not actually have to be \(10\) digits, it could easily be \(3,8,16\), the binary system (with only digits \(0\) and \(1\)) is used in all electronic devices, since it is enough to represent any bit of information we might possibly know.

image

Generally, when a line intersects a circle, it creates two different points of intersection. However, sometimes there is only one point. In such case we say the line is tangent to the circle. For example on the picture below the line \(CD\) intersects the circle at two points \(D\) and \(E\) and the line \(CB\) is tangent to the circle. To solve the problems today we will need the following theorem.
Theorem: The radius \(AB\) is perpendicular to the tangent line \(BC\).