Problems

Age
Difficulty
Found: 2469

The sequence of numbers \(a_1, a_2, a_3, \dots\) is given by the following conditions \(a_1 = 1\), \(a_{n + 1} = a_n + \frac {1} {a_n^2}\) (\(n \geq 0\)).

Prove that

a) this sequence is unbounded;

b) \(a_{9000} > 30\);

c) find the limit \(\lim \limits_ {n \to \infty} \frac {a_n} {\sqrt [3] n}\).

We are given rational positive numbers \(p, q\) where \(1/p + 1/q = 1\). Prove that for positive \(a\) and \(b\), the following inequality holds: \(ab \leq \frac{a^p}{p} + \frac{b^q}{q}\).

Let \(p\) and \(q\) be positive numbers where \(1 / p + 1 / q = 1\). Prove that \[a_1b_1 + a_2b_2 + \dots + a_nb_n \leq (a_1^p + \dots a_n^p)^{1/p}(b_1^q +\dots + b_n^q)^{1/q}\] The values of the variables are considered positive.

Let the sequences of numbers \(\{a_n\}\) and \(\{b_n\}\), that are associated with the relation \(\Delta b_n = a_n\) (\(n = 1, 2, \dots\)), be given. How are the partial sums \(S_n\) of the sequence \(\{a_n\}\) \(S_n = a_1 + a_2 + \dots + a_n\) linked to the sequence \(\{b_n\}\)?

Definition. Let the function \(f (x, y)\) be valid at all points of a plane with integer coordinates. We call a function \(f (x, y)\) harmonic if its value at each point is equal to the arithmetic mean of the values of the function at four neighbouring points, that is: \[f (x, y) = 1/4 (f (x + 1, y) + f (x-1, y) + f(x, y + 1) + f (x, y-1)).\] Let \(f(x, y)\) and \(g (x, y)\) be harmonic functions. Prove that for any \(a\) and \(b\) the function \(af (x, y) + bg (x, y)\) is also harmonic.

Let \(f (x, y)\) be a harmonic function. Prove that the functions \(\Delta_{x} f (x, y) = f (x + 1, y) - f (x, y)\) and \(\Delta_{y}f(x , y) = f(x, y + 1) - f(x, y)\) will also be harmonic.

Liouville’s discrete theorem. Let \(f (x, y)\) be a bounded harmonic function (see the definition in problem number 11.28), that is, there exists a positive constant \(M\) such that \(\forall (x, y) \in \mathbb {Z}^2\) \(| f (x, y) | \leq M\). Prove that the function \(f (x, y)\) is equal to a constant.