Problems

Age
Difficulty
Found: 2466

Author: D.V. Baranov

Vlad and Peter are playing the following game. On the board two numbers written are: \(1/2009\) and \(1/2008\). At each turn, Vlad calls any number \(x\), and Peter increases one of the numbers on the board (whichever he wants) by \(x\). Vlad wins if at some point one of the numbers on the board becomes equal to 1. Will Vlad win, no matter how Peter acts?

A castle is surrounded by a circular wall with nine towers, at which there are knights on duty. At the end of each hour, they all move to the neighbouring towers, each knight moving either clockwise or counter-clockwise. During the night, each knight stands for some time at each tower. It is known that there was an hour when at least two knights were on duty at each tower, and there was an hour when there was precisely one knight on duty on each of exactly five towers. Prove that there was an hour when there were no knights on duty on one of the towers.

In the entry \({*} + {*} + {*} + {*} + {*} + {*} + {*} + {*} = {*}{*}\) replace the asterisks with different digits so that the equality is correct.

Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).

A disk contains 2013 files of 1 MB, 2 MB, 3 MB, ..., 2012 MB, 2013 MB. Can I distribute them in three folders so that each folder has the same number of files and all three folders have the same size (in MB)?

Hannah placed 101 counters in a row which had values of 1, 2 and 3 points. It turned out that there was at least one counter between every two one point counters, at least two counters lie between every two two point counters, and at least three counters lie between every two three point counters. How many three point counters could Hannah have?

Author: A.V. Khachaturyan

The mum baked some pies – three with peach, three with kiwi and one with blackberries – and laid them on the dish in a circle (see the picture). Then she put the dish in a microwave to warm it up. All of the pies look the same. Maria knows how they lie on the dish but does not know how the dish turned in the microwave. She wants to eat a pie with blackberries, but she doesn’t want any of the others because she doesn’t like their taste. How can Maria surely achieve this by biting as few tasteless pies as possible?

Author: A.V. Khachaturyan

Replace the letters of the word \(MATEMATIKA\) with numbers and signs of addition and subtraction so that a numeric expression equal to 2014 is obtained.

(The same letters denote the same numbers or signs, different letters denote different numbers or signs. Note that it is enough to give an example.)

A chequered strip of \(1 \times N\) is given. Two players play the game. The first player puts a cross into one of the free cells on his turn, and subsequently the second player puts a nought in another one of the cells. It is not allowed for there to be two crosses or two noughts in two neighbouring cells. The player who is unable to make a move loses.

Which of the players can always win (no matter how their opponent played)?

We are given 111 different natural numbers that do not exceed 500. Could it be that for each of these numbers, its last digit coincides with the last digit of the sum of all of the remaining numbers?