Problems

Age
Difficulty
Found: 2591

A fly moves from the origin only to the right or upwards along the lines of the integer grid (a monotonic wander). In each node of the net, the fly randomly selects the direction of further movement: upwards or to the right.

a) Prove that sooner or later the fly will reach the point with abscissa 2011.

b) Find the mathematical expectation of the ordinate of the fly at the moment when the fly reached the abscissa 2011.

The point \(O\), lying inside the triangle \(ABC\), is connected by segments with the vertices of the triangle. Prove that the variance of the set of angles \(AOB\), \(AOC\) and \(BOC\) is less than a) \(10\pi ^2/27\); b) \(2\pi ^2/9\).

King Arthur has two equally wise advisers – Merlin and Percival. Each of them finds the correct answer to any question with probability \(p\) or an incorrect answer, with probability \(q = 1 - p\).

If both counsellors say the same thing, the king listens to them. If they say opposite things, then the king chooses a solution by tossing a coin.

One day, Arthur thought about why he had two advisers, would one not be enough? Then the king called for his counsellors and said:

“It seems to me that the probability of making the right solutions will not decrease if I keep one adviser and listen to him. If so, I must fire one of you. If not, I’ll leave it as it is. Tell me, should I fire one of you?”.

“Who exactly are you going to fire, King Arthur?”, asked the advisers.

“If I make the solution to fire one of you, I will make a choice by tossing a coin”.

The advisers went to think about the answer. The advisors, we repeat, are equally wise, but not equally honest. Percival is very honest and will try to give the right answer, even if he faces dismissal. And Merlin, honest about everything else, in this situation decides to give such an answer with which the probability of his dismissal is as low as possible. What is the probability that Merlin will be fired?

At the sound of the whistle of the PE teacher, all 10 boys and 7 girls lined up randomly.

Find the mathematical expectation of the value “the number of girls standing to the left of all of the boys.”

In his laboratory, the Scattered Scientist created a unicellular organism, which, with a probability of 0.6 is divided into two of the same organisms, and with a probability of 0.4 dies without leaving any offspring. Find the probability that after a while the Scattered Scientist will not have any such organisms.

Anna is waiting for the bus. Which event is most likely?

\(A =\{\)Anna waits for the bus for at least a minute\(\}\),

\(B = \{\)Anna waits for the bus for at least two minutes\(\}\),

\(C = \{\)Anna waits for the bus for at least five minutes\(\}\).

In the set \(-5\), \(-4\), \(-3\), \(-2\), \(-1\), \(0\), \(1\), \(2\), \(3\), \(4\), \(5\), replace one number with two other integers so that the set variance and its mean remain unchanged.

Alice has six magic pies in her pocket: two magnifying pies (if you eat it, you will grow), and two reducing pies (if you eat it, you will shrink). When Alice met Mary Ann, she, without looking, took out three pies from her pocket and gave them to Mary Ann. Find the probability that one of the girls does not have any magnifying pies.

Prince Charming, and another 49 men and 50 women are randomly seated around a round table. Let’s call a man satisfied, if a woman is sitting next to him. Find:

a) the probability that Prince Charming is satisfied;

b) the mathematical expectation of the number of satisfied men.

Valerie wrote the number 1 on the board, and then several more numbers. As soon as Valerie writes the next number, Mike calculates the median of the already available set of numbers and writes it in his notebook. At some point, in Mike’s notebook, the numbers: 1; 2; 3; 2.5; 3; 2.5; 2; 2; 2; 2.5 are written.

a) What is the fourth number written on the board?

b) What is the eighth number written on the board?