Problems

Age
Difficulty
Found: 2541

What is the largest number of horses that can be placed on an \(8\times8\) chessboard so that no horse touches more than seven of the others?

Harry thought of two positive numbers \(x\) and \(y\). He wrote down the numbers \(x + y\), \(x - y\), \(xy\) and \(x/y\) on a board and showed them to Sam, but did not say which number corresponded to which operation.

Prove that Sam can uniquely figure out \(x\) and \(y\).

Author: Shapovalov A.V.

Let \(A\) and \(B\) be two rectangles. From rectangles equal to \(A\), a rectangle similar to \(B\) was created.

Prove that from rectangles equal to \(B\), you can create a rectangle similar to \(A\).

The functions \(f\) and \(g\) are defined on the entire number line and are reciprocal. It is known that \(f\) is represented as a sum of a linear and a periodic function: \(f (x) = kx + h (x)\), where \(k\) is a number, and \(h\) is a periodic function. Prove that \(g\) is also represented in this form.

Two play the following game. There is a pile of stones. The first takes either 1 stone or 10 stones with each turn. The second takes either m or n stones with every turn. They take turns, beginning with the first player. He who can not make a move, loses. It is known that for any initial quantity of stones, the first one can always play in such a way as to win (for any strategy of the second player). What values can m and n take?

It is known that \(a > 1\). Is it always true that \(\lfloor \sqrt{\lfloor \sqrt{a}\rfloor }\rfloor = \lfloor \sqrt{4}{a}\rfloor\)?

A robot came up with a cipher for writing words: he replaced some letters of the alphabet with single-digit or two-digit numbers, using only the digits 1, 2 and 3 (different letters it replaces with different numbers). First, he wrote down, using the cipher: \(ROBOT = 3112131233\). Having encrypted the words \(CROCODIL\) and \(BEGEMOT\), he was surprised to note that the numbers were completely identical! Then the Robot ciphered the word \(MATHEMATICS\). Write down the number that he got.

At a contest named “Ah well, monsters!”, 15 dragons stand in a row. Between neighbouring dragons the number of heads differs by 1. If the dragon has more heads than both of his two neighbors, he is considered cunning, if he has less than both of his neighbors – strong, the rest (including those standing at the edges) are considered ordinary. In the row there are exactly four cunning dragons – with 4, 6, 7 and 7 heads and exactly three strong ones – with 3, 3 and 6 heads. The first and last dragons have the same number of heads.

a) Give an example of how this could occur.

b) Prove that the number of heads of the first dragon in all potential examples is the same.

Is there a positive integer \(n\) such that \[\sqrt{n}{17\sqrt{5} + 38} + \sqrt{n}{17\sqrt{5} - 38} = 2\sqrt{5}\,?\]