Problems

Age
Difficulty
Found: 2278

The set of symmetries of an object (e.g. a square) form an object called a group. We can formally define a group \(G\) as follows.

A is a non-empty set \(G\) with a binary operation \(*\) satisfying the following axioms (you can think of them as rules). A binary operation takes two elements of \(G\) and gives another element of \(G\).

  1. Closure: For all \(g\) and \(h\) in \(G\), \(g*h\) is also in \(G\).

  2. Identity: There is an element \(e\) of \(G\) such that \(e*g=g=g*e\) for all \(g\) in \(G\).

  3. Associativity: For all \(g\), \(h\) and \(k\) in \(G\), \((g*h)*k=g*(h*k)\).

  4. Inverses: For every \(g\) in \(G\), there exists a \(g^{-1}\) in \(G\) such that \(g*g^{-1}=e\).

Prove that the symmetries of the ‘reduce-reuse-recycle’ symbol form a group.

image

Consider the triangle \(BCD\), inscribed in a circle with center \(A\), the segments \(EF\), \(FG\), \(EG\) are tangent to the circle at the points \(C\), \(D\), \(B\) respectively. Prove that the Euler line of the triangle \(BCD\) passes through the center of the circle circumscribed around the triangle \(EFG\).

image

Show that there are infinitely many composite numbers \(n\) such that \(3^{n-1}-2^{n-1}\) is divisible by \(n\).

Show that there are infinitely many numbers \(n\) such that \(2^n+1\) is divisible by \(n\). Find all prime numbers, that satisfy this property.

If \(k>1\), show that \(k\) does not divide \(2^{k-1}+1\). Find all prime numbers \(p,q\) such that \(2^p+2^q\) is divisible by \(pq\).

Find all positive integers \((x,n)\) such that \(x^n + 2^n + 1\) is a divisor \(x^{n+1} + 2^{n+1} + 1\).

Show that if \(n\) is an integer, greater than \(1\), then \(n\) does not divide \(2^n-1\).

Find all the integers \(n\) such that \(1^n + 2^n + ... + (n-1)^n\) is divisible by \(n\).

Take a pile of cards, Ace to 7 of Diamonds. Consider the following shuffle: simultaneously move the first card to the third position, the third card to the fifth position, the fifth card to the seventh position, and the seventh card to the first position. Also move the second card to the fourth position, the fourth card to the sixth position and the sixth card to the second position.

How many times do you have to do this one specific shuffle in a row to get back to where you started?

How many permutations are there of 4 cards leaving no card in the same position as before?