What’s \(\sum_{i=0}^nF_i^2=F_0^2+F_1^2+F_2^2+...+F_{n-1}^2+F_n^2\) in terms of just \(F_n\) and \(F_{n+1}\)?
What are the ratios \(\frac{F_2}{F_1}\), \(\frac{F_3}{F_2}\), and so on until \(\frac{F_7}{F_6}\)? What do you notice about them?
In the example, we saw that \(\varphi^2=\varphi+1\). Can you write \(\varphi^3\) in the form \(a\varphi+b\), where \(a\) and \(b\) are positive integers?
Simplify \(F_0-F_1+F_2-F_3+...-F_{2n-1}+F_{2n}\), where \(n\) is a positive integer.
In the \(6\times7\) large rectangle shown below, how many rectangles are there in total formed by grid lines? [need to insert image]
How many cuboids are contained in an \(n\times n\times n\) cube? For example, we’ve got \(n^3\) cuboids of size \(1\times1\times1\), and obviously just \(1\) of size \(n\times n\times n\) (which is the whole cube itself). But we also have to count how many there of size \(1\times1\times2\), \(1\times2\times3\), and several more.
Suppose that \(p\) is a prime number. How many numbers are there less than \(p^2\) that are relatively prime to \(p^2\)?
On the questioners’ planet (where everyone can only ask questions. Cricks can only ask questions to which the answer is yes, and Goops can only ask questions to which the answer is no), you meet 4 alien mathematicians.
They’re called Alexander Grothendieck, Nicolas Bourbaki, Henri Cartan and Daniel Kan (you may like to shorten their names to \(A\), \(B\), \(C\) and \(D\)).
Alexander asks the following question “Am I the kind who could ask whether Bourbaki could ask whether Cartan could ask whether Daniel is a Goop?"
Amongst the final three (that is, Bourbaki, Cartan and Daniel), are there an even or an odd number of Goops?
Let \(n\ge r\) be positive integers. What is \(F_n^2-F_{n-r}F_{n+r}\) in terms of \(F_r\)?