Problems

Age
Difficulty
Found: 2681

Let \(p\) be a prime number, \(a\) be an integer, not divisible by \(p\). Prove that \(a^p-a\) is divisible by \(p\).

Let \(n\) be an integer number. Denote by \(\phi(n)\) the number of integers from \(1\) to \(n-1\) coprime with \(n\). Find \(\phi(n)\) for the following cases:

  • \(n\) is a prime number.

  • \(n = p^k\) for a prime \(p\).

  • \(n=pq\) for two different primes \(p\) and \(q\).

Let \(n\) be an integer number, \(a\) be an integer, coprime with \(n\). Prove that \(a^{\phi(n)-1}-1\) is divisible by \(n\).

With a pile of four cards, does reversing the order of the pile by counting the cards out one by one leaves no card in its original position?

You have in your hands a royal flush! That is, Ace, King, Queen, Jack and \(10\) of spades. How many shuffles of your hand swap the Ace and Jack?

In the diagram below, I wish to write the numbers \(6, 11, 19, 23, 25, 27\) and \(29\) in the squares, but I want the sum of the numbers in the horizontal row to equal the sum of the numbers in the vertical column. What number should I put in the blue square with the question mark?

image

You have a row of coins and you can perform these three operations as many times as you like:

  1. Remove three adjacent heads

  2. Remove two adjacent tails

  3. If there’s a head between two tails, then you can remove the head and swap the two tails to heads.

You apply these operations until you can’t make any more moves. Show that you will always get the same configuration at the end, no matter the order.

Let \(a\) be a positive integer, and let \(p\) be a prime number. Prove that \(a^p - a\) is a multiple of \(p\).

We ‘typically’ use the formula \(\frac{1}{2}bh\) for the area of a triangle, where \(b\) is the length of the base, and \(h\) is the perpendicular height. Here’s another one, called Heron’s formula.

Call the sides of the triangle \(a\), \(b\) and \(c\). The perimeter is \(a+b+c\). We call half of this the textitsemiperimeter, \(s=\frac{a+b+c}{2}\). Then the area of this triangle is \[\sqrt{s(s-a)(s-b)(s-c)}.\] Prove this formula is correct.

We have a square of side length 1. At each vertex of the square, we draw a circle of radius 1. What is the area bounded by all four circles?

image