Proposed by USA for IMO 1993. For positive real numbers \(a,b,c,d\) prove that \[\frac{a}{b+2c+3d} + \frac{b}{c+2d+3a} + \frac{c}{d+2a+3b} + \frac{d}{a+2b+3c} \geq \frac{2}{3}.\]
Prove the \(AM-GM\) inequality for positive real numbers \(a_1,a_2,...a_n\): \[\frac{a_1+a_2+...a_n}{n}\geq \sqrt[n]{a_1a_2...a_n}.\]