a) A florist has \(11\) different types of flowers in her shop. She was asked to make a bouquet with \(4\) different flowers. In how many ways can she do that?
b) What if she was asked to use exactly \(7\) types of flowers?
c) Knowing the answer to a), do you know how and why is the answer to b) related to it?
Tom’s dad built a 9 board-long fence, which Tom’s mother painted white. Tom, who has 3 different cans of paint – red, green and blue – would like to decorate the fence.
a) If he paints every second board (boards 2, 4, ...), in how many ways can he do it?
b) If he paints every second board, and if exactly one of the boards should be red, in how many ways can he do it?
c) If he paints every board, if exactly three boards should be red, and if the fence should be symmetrical, in how many ways can he do it?
There are \(19\) adventurers standing in a queue to see a dragon’s treasure. They can enter the cave in three groups, with \(15\) minute breaks between two consecutive groups. The order in which adventurers will enter the cave is fixed – they are in a queue after all. But they can still decide who will be in the first, second and third group. Each group has to consist of at least one adventurer. In how many ways can they do that?
Ten players were entered into a badminton tournament. The first round consisted of 5 matches, with each player in one match. In how many different ways could the 10 players be matched against each other?
There are again some adventurers standing in a queue to see a dragon’s treasure. This time, there are more of them – \(26\). The rules have changed slightly, they still enter exactly in the order they are queuing, but they now have to divide themselves into \(5\) groups, and some of the groups can be empty, do not consist of any adventurers at all. In how many ways can they do that now?
Problems often involve a protagonist, a quest and a story. In combinatorics, stories can help us prove identities and formulas, that would be difficult to prove otherwise. Here, you can write your own story, which will show that the following statement is always true:
The number of ways we can choose \(k\) out of \(n\) items is equal to the number of ways we can choose \(k\) out of \(n-1\) objects PLUS the number of ways in which we can choose \(k-1\) out of \(n-1\) objects.
In a trapezium \(ABCD\), the side \(AB\) is parallel to the side \(CD\). Show that the areas of triangles \(\triangle ABC\) and \(\triangle ABD\) are equal.
The triangle visible in the picture is equilateral. The hexagon inside is a regular hexagon. If the area of the whole big triangle is \(18\), find the area of the small blue triangle.
On the left there is a circle inscribed in a square of side 1. On the right there are 16 smaller, identical circles, which all together fit inside a square of side 1. Which area is greater, the yellow or the blue one?
In a pentagon \(ABCDE\), diagonal \(AD\) is parallel to the side \(BC\) and the diagonal \(CE\) is parallel to the side \(AB\). Show that the areas of the triangles \(\triangle ABE\) and \(\triangle BCD\) are the same.