There are 100 boxes numbered from 1 to 100. In one box there is a prize and the presenter knows where the prize is. The spectator can send the presented a pack of notes with questions that require a “yes” or “no” answer. The presenter mixes the notes in a bag and, without reading out the questions aloud, honestly answers all of them. What is the smallest number of notes you need to send to know for sure where the prize is?
At a round table, 30 people are sitting – knights and liars (knights always tell the truth, and liars always lie). It is known that each of them at that table has exactly one friend, and for each knight this friend is a liar, and for a liar this friend is a knight (friendship is always mutual). To the question “Does your friend sit next to you?” those in every other seat answered “yes”. How many of the others could also have said “Yes”?
In the equality \(TIME + TICK = SPIT\), replace the same letters with the same numbers, and different letters with different digits so that the word \(TICK\) is as small as possible (there are no zeros among the digits).
Can \(100\) weights of masses \(1,2,3,\dots,99,100\) be arranged into \(10\) piles, all of different total masses, so that the heavier a pile is, the fewer weights it contains?
Four children said the following about each other.
Mary: Sarah, Nathan and George solved the problem.
Sarah: Mary, Nathan and George didn’t solve the problem.
Nathan: Mary and Sarah lied.
George: Mary, Sarah and Nathan told the truth.
How many of the children actually told the truth?
Find all possible ways to represent \(2025\) as the sum of four three-digit numbers. We have the restriction that we can use only two digits across the four numbers.
Matt, Conrad and Louie ate some sweets. Their surnames are Smith, Jones and Cooper. Smith ate 2 sweets fewer than Matt, Jones – 2 sweets fewer than Conrad, and Conrad ate more than anyone. Which of them has which last name?
2012 pine cones lay under the fir-tree. Winnie the Pooh and the donkey Eeyore play a game: they take turns picking up these pine cones. Winnie-the-Pooh takes either one or four cones in each of his turns, and Eeyore – either one or three. Winnie the Pooh goes first. The player who cannot make a move loses. Which of the players can be guaranteed to win, no matter how their opponent plays?
In front of a gnome there lie three piles of diamonds: one with 17, one with 21 and one with 27 diamonds. In one of the piles lies one fake diamond. All the diamonds have the same appearance, and all real diamonds weigh the same, and the fake one differs in its weight. The gnome has a cup weighing scale without weights. The dwarf must find with one weighing a pile, in which all the diamonds are real. How should he do it?
Ladybirds gathered in a sunny clearing. If the ladybird has \(6\) spots, then it always speaks the truth, and if it has \(4\) spots, then it always lies. There are no other types of ladybirds in the meadow. The first ladybird said: “We each have the same number of spots on our backs.” The second one said: “Everyone has \(30\) spots on their backs in total.” “No, we all have \(26\) spots on their backs in total,” the third objected. “Of these three, exactly one told the truth,” – said each of the other ladybirds. How many ladybirds were gathered in the meadow?