Problems

Age
Difficulty
Found: 1445

In a chess tournament, each participant played two games with each of the other participants: one with white pieces, the other with black. At the end of the tournament, it turned out that all of the participants scored the same number of points (1 point for a victory, \(\frac{1}{2}\) a point for a draw and 0 points for a loss). Prove that there are two participants who have won the same number of games using white pieces.

The grasshopper jumps on the interval \([0,1]\). On one jump, he can get from the point \(x\) either to the point \(x/3^{1/2}\), or to the point \(x/3^{1/2} + (1- (1/3^{1/2}))\). On the interval \([0,1]\) the point \(a\) is chosen.

Prove that starting from any point, the grasshopper can be, after a few jumps, at a distance less than \(1/100\) from point \(a\).

All of the sweets of different sorts in stock are arranged in \(n\) boxes, for which prices are set at \(1, 2, \dots , n\), respectively. It is required to buy such \(k\) of these boxes of the least total value, which contain at least \(k/n\) of the mass of all of the sweets. It is known that the mass of sweets in each box does not exceed the mass of sweets in any more expensive box.

a) What boxes should I buy when \(n = 10\) and \(k = 3\)?

b) The same question for arbitrary natural numbers \(n \geq k\).

The bank of the Nile was approached by a group of six people: three Bedouins, each with his wife. At the shore is a boat with oars, which can withstand only two people at a time. A Bedouin can not allow his wife to be without him whilst in the company of another man. Can the whole group cross to the other side?

Is it possible to place 12 identical coins along the edges of a square box so that touching each edge there were exactly: a) 2 coins, b) 3 coins, c) 4 coins, d) 5 coins, e) 6 coins, f) 7 coins.

You are allowed to place coins on top of one another. In the cases where it is possible, draw how this could be done. In the other cases, prove that doing so is impossible.

In a class there are 50 children. Some of the children know all the letters except “h” and they miss this letter out when writing. The rest know all the letters except “c” which they also miss out. One day the teacher asked 10 of the pupils to write the word “cat”, 18 other pupils to write “hat” and the rest to write the word “chat”. The words “cat” and “hat” each ended up being written 15 times. How many of the pupils wrote their word correctly?

Is it possible to find natural numbers \(x\), \(y\) and \(z\) which satisfy the equation \(28x+30y+31z=365\)?

Solve problem number 108736 for the inscription \(A\), \(BC\), \(DEF\), \(CGH\), \(CBE\), \(EKG\).

At the end of the term, Billy wrote out his current singing marks in a row and put a multiplication sign between some of them. The product of the resulting numbers turned out to be equal to 2007. What is Billy’s term mark for singing? (The marks that he can get are between 2 and 5, where 5 is the highest mark).