There is a \(5\times 9\) rectangle drawn on squared paper. In the lower left corner of the rectangle is a button. Kevin and Sophie take turns moving the button any number of squares either to the right or up. Kevin goes first. The winner is the one who places the button in upper right corner. Who would win, Kevin or Sophie, by using the right strategy?
Solve the equation: \[x + \frac{x}{x} + \frac{x}{x+\frac{x}{x}} = 1\]
Between them, Jennifer and Alex shared the money they made from running a lemonade stand. Jennifer thought: “If I took \(40\%\) more money then Alex’s share would decrease by \(60\%\)”. How would Alex’s share of the profits change if Jennifer took \(50\%\) more money for herself?
Find all functions \(f (x)\) such that \(f (2x + 1) = 4x^2 + 14x + 7\).
In a board, 20 pins are placed (see the picture). The distance between any adjacent pins is 1 inch. Pull a string of length 19 inches from the first pin to the second one, so that it goes through all the pins.
Henry did not manage to get into the elevator on the first floor of the building and decided to go up the stairs. It takes 2 minutes to rise to the third floor. How long does it take to rise to the ninth floor?
There are \(12\) aliens in the High Council of the planet of liars and truth tellers. “There is no-one honest here,” said the first member of the council. “There is at most one honest person here,” said the second person. The third person said that there are at most \(2\) honest members, the fourth person said there are at most \(3\) honest aliens, and so on until the twelfth person, who said there are at most \(11\) honest aliens. How many honest members are in the High Council?
In a chess tournament, each participant played two games with each of the other participants: one with white pieces, the other with black. At the end of the tournament, it turned out that all of the participants scored the same number of points (1 point for a victory, \(\frac{1}{2}\) a point for a draw and 0 points for a loss). Prove that there are two participants who have won the same number of games using white pieces.
The grasshopper jumps on the interval \([0,1]\). On one jump, he can get from the point \(x\) either to the point \(x/3^{1/2}\), or to the point \(x/3^{1/2} + (1- (1/3^{1/2}))\). On the interval \([0,1]\) the point \(a\) is chosen.
Prove that starting from any point, the grasshopper can be, after a few jumps, at a distance less than \(1/100\) from point \(a\).
Two different numbers \(x\) and \(y\) (not necessarily integers) are such that \(x^2-2000x=y^2-2000y\). Find the sum of \(x\) and \(y\).