Problems

Age
Difficulty
Found: 1563

Prove that if \(p\) is a prime number, then \((a + b)^p - a^p - b^p\) is divisible by \(p\) for any integers \(a\) and \(b\).

Write the following rational numbers in the form of decimal fractions: a) \(\frac {1}{7}\); b) \(\frac {2}{7}\); c) \(\frac{1}{14}\); d) \(\frac {1}{17}\).

a) One person had a basement illuminated by three electric bulbs. Switches of these bulbs are located outside the basement, so that having switched on any of the switches, the owner has to go down to the basement to see which lamp switches on. One day he came up with a way to determine for each switch which bulb it switched on, descending into the basement exactly once. What is the method?

b) If he goes down to the basement exactly twice, how many bulbs can he identify the switches for?

Peter thought of a number between 1 to 200. What is the fewest number of questions for which you can guess the number if Peter answers

a) “yes ” or “no”;

b) “yes”, “no” or “I do not know”

for every question?

There are 4 coins. Of the four coins, one is fake (it differs in weight from the real ones, but it is not known if it is heavier or lighter). Find the fake coin using two weighings on scales without weights.

Let \((1 + \sqrt {2} + \sqrt {3})^n = p_n + q_n \sqrt {2} + r_n \sqrt {3} + s_n \sqrt {6}\) for \(n \geq 0\). Find:

a) \(\lim \limits_ {n \to \infty} {\frac {p_n} {q_n}}\); b) \(\lim \limits_ {n \to \infty} {\frac {p_n} {r_n}}\); c) \(\lim \limits_ {n \to \infty} {\frac {p_n} {s_n}}\);

Find the generating functions of the sequences of Chebyshev polynomials of the first and second kind: \[F_T(x,z) = \sum_{n=0}^{\infty}T_n(x)z^n;\quad F_U(x,z) = \sum_{n=0}^{\infty}U_n(X)z^n.\]

Definitions of Chebyshev polynomials can be found in the handbook.

We denote by \(P_{k, l}(n)\) the number of partitions of the number \(n\) into at most \(k\) terms, each of which does not exceed \(l\). Prove the equalities:

a) \(P_{k, l}(n) - P_{k, l-1}(n) = P_{k-1, l}(n-l)\);

b) \(P_{k, l}(n) - P_{k-1, l} (n) = P_{k, l-1}(n-k)\);

c) \(P_{k, l}(n) = P_{l, k} (n)\);

d) \(P_{k, l}(n) = P_{k, l} (kl - n)\).

Author: D.E. Shnol

On the island of Truthland, all of the inhabitants may be mistaken, but the younger ones never contradict the elders, and when the older ones contradict the younger ones, they (the elders) are not mistaken. Between the residents A, B and C there was such a conversation:

A: B is the tallest.

B: A is the tallest.

C: I’m taller than B.

Does it follow from this conversation that the younger the person, the taller he or she is (for the three people having this conversation)?