Problems

Age
Difficulty
Found: 998

If a magician puts \(1\) dove into his hat, he pulls out \(2\) rabbits and \(2\) flowers from it. If the magician puts \(1\) rabbit in, he pulls out \(2\) flowers and \(2\) doves. If he puts \(1\) flower in, he pulls out \(1\) rabbit and \(3\) doves. The magician starts with \(1\) rabbit. Could he end up with the same number of rabbits, doves, and flowers after performing his hat trick several times?

In the other room there are two doors. The statements on them say:

  1. There is treasure behind at least one of the doors.

  2. There is treasure behind the first door.

Your guide says: The first sign is true if there is treasure behind the first door, otherwise it is false. The second sign is false if there is treasure behind the second door, otherwise it is true. What would you do?

Is there a divisibility rule for \(2^n\), where \(n = 1\), \(2\), \(3\), . . .? If so, then explain why the rule works.

Find a concise formula for the sum \(1+3+\dots+(2k+1)\).

Can you find a formula relating \(1^3+2^3+\dots+n^3\) to \(1+2+\dots+n\)?

Prove the reverse triangle inequality: for every pair of real numbers \(x\), \(y\), we have \(\left| \left| x \right| - \left| y \right| \right| \leq \left| x - y \right|\).

Can you come up with a divisibility rule for \(5^n\), where \(n=1\), \(2\), \(3\), . . .? Prove that the rule works.

Show that for each \(n=1\), \(2\), \(3\), . . ., we have \(n<2^n\).

You and I are going to play a game. We have one million grains of sand in a bag. Each of us take turn to remove \(2\), \(3\) or \(5\) grains of sand from the bag. The first person that cannot make a move loses.

Would you go first?

For every natural number \(k\ge2\), find a trivial and a non-trivial combination of \(k\) real numbers such that their sum is twice their product.