Some points from a finite set are connected by line segments. Prove that two points can be found which have the same number of line segments connected to them.
A rectangular table is given, in each cell of which a real number is written, and in each row of the table the numbers are arranged in ascending order. Prove that if you arrange the numbers in each column of the table in ascending order, then in the rows of the resulting table, the numbers will still be in ascending order.
In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?
An endless board is painted in three colours (each cell is painted in one of the colours). Prove that there are four cells of the same colour, located at the vertices of the rectangle with sides parallel to the side of one cell.
On a plane, six points are given so that no three of them lie on the same line. Each pair of points is connected by a blue or red segment.
Prove that among these points three such points can be chosen so that all sides of the triangle formed by them will be of the same colour.
There are 17 carriages in a passenger train. How many ways can you arrange 17 conductors around the carriages if one conductor has to be in each carriage?
How many ways can you choose four people for four different positions, if there are nine candidates for these positions?
There are \(n\) points on the plane. How many lines are there with endpoints at these points?
Prove the validity of the following formula of Newton’s binom \[(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n}y^n.\]
Think of a way to finish constructing Pascal’s triangle upward.