There are \(n\) points on the plane. How many lines are there with endpoints at these points?
On a plane \(n\) randomly placed lines are given. What is the number of triangles formed by them?
On two parallel lines \(a\) and \(b\), the points \(A_1, A_2, \dots , A_m\) and \(B_1, B_2, \dots , B_n\) are chosen, respectively, and all of the segments of the form \(A_iB_j\), where \(1 \leq i \leq m\), \(1 \leq j \leq n\). How many intersection points will there be if it is known that no three of these segments intersect at one point?
Prove the validity of the following formula of Newton’s binom \[(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n}y^n.\]
How many rational terms are contained in the expansion of
a) \((\sqrt 2 + \sqrt[4]{3})^{100}\);
b) \((\sqrt 2 + \sqrt[3]{3})^{300}\)?
How many six-digit numbers exist, for which each succeeding number is smaller than the previous one?
Why are the equalities \(11^2 = 121\) and \(11^3 = 1331\) similar to the lines of Pascal’s triangle? What is \(11^4\) equal to?
Think of a way to finish constructing Pascal’s triangle upward.
Calculate the following sums:
a) \(\binom{5}{0} + 2\binom{5}{1} + 2^2\binom{5}{2} + \dots +2^5\binom{5}{5}\);
b) \(\binom{n}{0} - \binom{n}{1} + \dots + (-1)^n\binom{n}{n}\);
c) \(\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}\).
In the expansion of \((x + y)^n\), using the Newton binomial formula, the second term was 240, the third – 720, and the fourth – 1080. Find \(x\), \(y\) and \(n\).