Problems

Age
Difficulty
Found: 2662

Prove that for \(x \ne \pi n\) (\(n\) is an integer) \(\sin x\) and \(\cos x\) are rational if and only if the number \(\tan x/2\) is rational.

\(N\) points are given, no three of which lie on one line. Each two of these points are connected by a segment, and each segment is coloured in one of the \(k\) colours. Prove that if \(N > \lfloor k!e\rfloor\), then among these points one can choose three such that all sides of the triangle formed by them will be colored in one colour.

There are 4 weights and scales. How many loads that are different by weight can be accurately weighed using these weights, if

a) weights can be placed only on one side of the scales;

b) weights can be placed on both sides of the scales?

a) One person had a basement illuminated by three electric bulbs. Switches of these bulbs are located outside the basement, so that having switched on any of the switches, the owner has to go down to the basement to see which lamp switches on. One day he came up with a way to determine for each switch which bulb it switched on, descending into the basement exactly once. What is the method?

b) If he goes down to the basement exactly twice, how many bulbs can he identify the switches for?

Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?

Peter thought of a number between 1 to 200. What is the fewest number of questions for which you can guess the number if Peter answers

a) “yes ” or “no”;

b) “yes”, “no” or “I do not know”

for every question?

There are 4 coins. Of the four coins, one is fake (it differs in weight from the real ones, but it is not known if it is heavier or lighter). Find the fake coin using two weighings on scales without weights.