Problems

Age
Difficulty
Found: 3277

There are 4 coins. Of the four coins, one is fake (it differs in weight from the real ones, but it is not known if it is heavier or lighter). Find the fake coin using two weighings on scales without weights.

Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]

For a given polynomial \(P (x)\) we describe a method that allows us to construct a polynomial \(R (x)\) that has the same roots as \(P (x)\), but all multiplicities of 1. Set \(Q (x) = (P(x), P'(x))\) and \(R (x) = P (x) Q^{-1} (x)\). Prove that

a) all the roots of the polynomial \(P (x)\) are the roots of \(R (x)\);

b) the polynomial \(R (x)\) has no multiple roots.

Prove that the following polynomial does not have any identical roots: \(P(x) = 1 + x + x^2/2! + \dots + x^n/n!\)