What is the minimum number of squares that need to be marked on a chessboard, so that:
1) There are no horizontally, vertically, or diagonally adjacent marked squares.
2) Adding any single new marked square breaks rule 1.
What figure should I put in place of the “?” in the number \(888 \dots 88\,?\,99 \dots 999\) (eights and nines are written 50 times each) so that it is divisible by 7?
We are given 101 rectangles with integer-length sides that do not exceed 100.
Prove that amongst them there will be three rectangles \(A, B, C\), which will fit completely inside one another so that \(A \subset B \subset C\).
A staircase has 100 steps. Vivian wants to go down the stairs, starting from the top, and she can only do so by jumping down and then up, down and then up, and so on. The jumps can be of three types – six steps (jumping over five to land on the sixth), seven steps or eight steps. Note that Vivian does not jump onto the same step twice. Will she be able to go down the stairs?
Solve the equation \(x + \frac{1}{(y + 1/z)}= 10/7\) in natural numbers.
10 friends sent one another greetings cards; each sent 5 cards. Prove that there will be two friends who sent cards to one another.
In a certain kingdom there were 32 knights. Some of them were vassals of others (a vassal can have only one suzerain, and the suzerain is always richer than his vassal). A knight with at least four vassals is given the title of Baron. What is the largest number of barons that can exist under these conditions?
(In the kingdom the following law is enacted: “the vassal of my vassal is not my vassal”).
A gang contains 101 gangsters. The whole gang has never taken part in a raid together, but every possible pair of gangsters have taken part in a raid together exactly once. Prove that one of the gangsters has taken part in no less than 11 different raids.
Sage thought of the sum of some three natural numbers, and the Patricia thought about their product.
“If I knew,” said Sage, “that your number is greater than mine, then I would immediately name the three numbers that are needed.”
“My number is smaller than yours,” Patricia answered, “and the numbers you want are ..., ... and ....”
What numbers did Patricia name?
Ben noticed that all 25 of his classmates have a different number of friends in this class. How many friends does Ben have?